
MATH 301
INTRODUCTION TO PROOFS

Sina Hazratpour
Johns Hopkins University

Fall 2021

- Proof Strategies



Example.
Show that 0 is the only real solution to the equation

x +
√
x = 0 :

x +
√
x = 0

⇒ x = −
√
x rearranging

⇒ x2 = x squaring

⇒ x(x − 1) = 0 rearranging

⇒ x = 0 or x = 1

Now certainly 0 is a solution to the equation, since 0 +
√

0 = 0 + 0 = 0.
However, 1 is not a solution, since 1 +

√
1 = 1 + 1 = 2.
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...

Therefore, given a real number x , we have

x +
√
x = 0 ⇔ x = 0

Checking the converse here was vital to our success in solving the equation!

Note that the formal expression of our reasoning is of the form`
(P ∨ Q) ∧ ¬Q

´
⇒ P :
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Example

Proposition.

Let n ∈ Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

We use the elimination rule of disjunction (from Definition 1.1.12).

p1 ∨ p2 ∨ p3

[p1]

 

q

[p2]

 
q

[p3]

 

q
(∨e)q

Determine what p1; p2; p3 and q are.



Proposition.
Consider the polynomial p(x) = x2 + ax + b whose coefficients a; b are real
numbers and whose discriminant ∆ = a2 − 4b is non-zero. If p(x) has two
distinct roots, then their difference is either a real number or a purely imaginary
number. Furthermore, if ∆ > 0 , then the difference of the roots is a real
number.

First, let us find the logical form of the proposition above.

`
∃c; d ∈ R;∃¸; ˛ ∈ C; p(¸) = 0 ∧ p(˛) = 0 ∧ (¸ 6= ˛) ∧ (¸− ˛ = c + di)

´
⇒

`
c = 0 ∨ d = 0

´
OR equivalently,`
∃c ∈ R; ∃d ∈ R; ∃¸ ∈ C;∃˛ ∈ C;

(¸2 + a¸+ b = 0) ∧ (˛2 + a˛ + b = 0) ∧ (¸ 6= ˛) ∧ (¸− ˛ = c + di)
´

⇒
`
c = 0 ∨ d = 0

´



We use the following proof strategy:

∀x
`
A(x)⇒ B)⇒ ∃xA(x)⇒ B

That is in order to prove a statement of the form

∃xA(x)⇒ B

it suffices to prove

∀x
`
A(x)⇒ B)

.



Proof.
Let ¸ and ˛ be the (distinct) roots of the polynomial x2 + ax + b. Therefore,

x2 + ax + b = (x − ¸)(x − ˛) :

Hence, ¸+ ˛ = −a and ¸˛ = b. By the identity (¸+ ˛)2 = (¸− ˛)2 + 2¸˛,
we get a2 − 4b = (¸− ˛)2. The right side of the the latter equation is a real
number since the left side is so. Now, suppose ¸− ˛ = c + di for some real
numbers c; d . Hence (¸− ˛)2 = c2 − d2 + 2cdi . Hence, 2cd = 0 for the right
hand side to be a real number. Therefore, either c = 0 or d = 0. Moreover, if
∆ > 0, by Example 1.1.26, p(x) has two real roots and therefore, their difference
is also real.


