MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour
Johns Hopkins University

Fall 2021

- Proof Strategies

Example.

Show that 0 is the only real solution to the equation

$$
x+\sqrt{x}=0 .
$$

Example.

Show that 0 is the only real solution to the equation

$$
x+\sqrt{x}=0 .
$$

$$
\begin{aligned}
& x+\sqrt{x}=0 \\
\Rightarrow & x=-\sqrt{x} \\
\Rightarrow & x^{2}=x \\
\Rightarrow & x(x-1)=0 \\
\Rightarrow & x=0 \text { or } x=1
\end{aligned}
$$

rearranging
squaring
rearranging

Example.

Show that 0 is the only real solution to the equation

$$
x+\sqrt{x}=0 .
$$

$$
\begin{array}{rlrl}
& x+\sqrt{x}=0 & \\
\Rightarrow & x=-\sqrt{x} & & \text { rearranging } \\
\Rightarrow & x^{2}=x & & \text { squaring } \\
\Rightarrow & x(x-1)=0 & & \text { rearranging } \\
\Rightarrow & x=0 \text { or } x=1 & &
\end{array}
$$

Now certainly 0 is a solution to the equation, since $0+\sqrt{0}=0+0=0$.

Example.

Show that 0 is the only real solution to the equation

$$
x+\sqrt{x}=0 .
$$

$$
\begin{array}{rlr}
& x+\sqrt{x}=0 & \\
\Rightarrow & x=-\sqrt{x} & \\
\Rightarrow & x^{2}=x & \\
\Rightarrow & x(x-1)=0 & \\
\Rightarrow & x=0 \text { rearranging } \\
& x=1 &
\end{array}
$$

Now certainly 0 is a solution to the equation, since $0+\sqrt{0}=0+0=0$. However, 1 is not a solution, since $1+\sqrt{1}=1+1=2$.

Therefore, given a real number x, we have

$$
x+\sqrt{x}=0 \quad \Leftrightarrow \quad x=0
$$

Checking the converse here was vital to our success in solving the equation!

Therefore, given a real number x, we have

$$
x+\sqrt{x}=0 \quad \Leftrightarrow \quad x=0
$$

Checking the converse here was vital to our success in solving the equation! Note that the formal expression of our reasoning is of the form

$$
((P \vee Q) \wedge \neg Q) \Rightarrow P
$$

Example

Proposition.

Let $n \in \mathbb{Z}$. Then n^{2} leaves a remainder of 0 or 1 when divided by 3 .

We use the elimination rule of disjunction (from Definition 1.1.12).

Determine what p_{1}, p_{2}, p_{3} and q are.

Proposition.

Consider the polynomial $p(x)=x^{2}+a x+b$ whose coefficients a, b are real numbers and whose discriminant $\Delta=a^{2}-4 b$ is non-zero. If $p(x)$ has two distinct roots, then their difference is either a real number or a purely imaginary number. Furthermore, if $\Delta \geqslant 0$, then the difference of the roots is a real number.

First, let us find the logical form of the proposition above.

$$
\begin{aligned}
& (\exists c, d \in \mathbb{R}, \exists \alpha, \beta \in \mathbb{C}, p(\alpha)=0 \wedge p(\beta)=0 \wedge(\alpha \neq \beta) \wedge(\alpha-\beta=c+d i)) \\
& \Rightarrow(c=0 \vee d=0)
\end{aligned}
$$

OR equivalently,

$$
\begin{aligned}
& (\exists c \in \mathbb{R}, \exists d \in \mathbb{R}, \exists \alpha \in \mathbb{C}, \exists \beta \in \mathbb{C} \\
& \left.\quad\left(\alpha^{2}+a \alpha+b=0\right) \wedge\left(\beta^{2}+a \beta+b=0\right) \wedge(\alpha \neq \beta) \wedge(\alpha-\beta=c+d i)\right) \\
& \quad \Rightarrow(c=0 \vee d=0)
\end{aligned}
$$

We use the following proof strategy:

$$
\forall x(A(x) \Rightarrow B) \Rightarrow \exists x A(x) \Rightarrow B
$$

That is in order to prove a statement of the form

$$
\exists x A(x) \Rightarrow B
$$

it suffices to prove

$$
\forall x(A(x) \Rightarrow B)
$$

Proof.

Let α and β be the (distinct) roots of the polynomial $x^{2}+a x+b$. Therefore,

$$
x^{2}+a x+b=(x-\alpha)(x-\beta)
$$

Hence, $\alpha+\beta=-a$ and $\alpha \beta=b$. By the identity $(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+2 \alpha \beta$, we get $a^{2}-4 b=(\alpha-\beta)^{2}$. The right side of the the latter equation is a real number since the left side is so. Now, suppose $\alpha-\beta=c+d i$ for some real numbers c, d. Hence $(\alpha-\beta)^{2}=c^{2}-d^{2}+2 c d i$. Hence, $2 c d=0$ for the right hand side to be a real number. Therefore, either $c=0$ or $d=0$. Moreover, if $\Delta \geqslant 0$, by Example 1.1.26, $p(x)$ has two real roots and therefore, their difference is also real.

